

Using Analytics to Support Decision Processes for
Development and Design

Patrick Wagstrom

IBM TJ Watson Research Center

19 Skyline Dr, Hawthorne, NY 10532

pwagstro@us.ibm.com

Anita Sarma

Department of Computer Science & Engineering

University of Nebraska-Lincoln

Lincoln, NE 68588

asarma@cse.unl.edu

ABSTRACT

Globalization has resulted in software teams that are increa-

singly large, multi-cultural, and geographically distributed;

and software systems that are increasingly dependent on

technology produced by remote teams or as commercial-

off-the-shelf (or open sourced). In such environments mak-

ing the right technical decision largely hinges on the social

context and trust toward the software producer. Creating

this shared context and building trust is not easy – especial-

ly when teams are distributed across international bounda-

ries, time zones, and culture. Creation of trust has thus far

been largely an informal process with little technological

support. However, the popularity of online repositories,
both public (e.g. StackOverflow, GitHub etc) and private

(e.g. internal source code repositories, project plans), that

store social and technical information has made it possible

to analyze past development and social interaction traces to

develop actionable analytics to facilitate building trust.

Author Keywords

Software Development, Design, Analytics

ACM Classification Keywords

D2.6. Programming Environments, D2.9: Management:

Programming Teams, H5.2: User-Interfaces: Training, Help

and Documentation

General Terms

Human Factors, Management, Design

INTRODUCTION

Despite advances in software engineering and software

processes over the last half-century, software projects still

fail – often. The prevalence of large-scale projects and dis-

tributed teams contributes to this problem by creating an

environment where teams are comprised of members who

are dispersed in both time and space. Teams are dynamic

and fluid, often created by bringing members together for
specific tasks, for a specific time period, and comprising

members who have never met each other. Such teams suffer

from numerous performance degrading issues; chief among

them is the absence of trust among team members and lack

of shared mental models of work and culture.

Numerous case studies have found distributed software

development to inherently suffer from longer times to com-

pletion [2,6], higher incidence of bugs [8], and miscommu-

nications. A large portion of these problems can be attri-

buted to a lack of trust and a shared mental model of the

work to be completed and the culture across teams. For

example, a study found developers to wrongly perceive that

remote team members provided less help [3] compared to
their collocated members, where in fact, the remote team

members had equal contributions. Other studies have found

that time zone differences along with different national hol-

idays can lead team members to perceive their remote team

members to be late or worse, incompetent [5,7].

Developers without a shared work history, a common situa-

tion in large distributed teams, have not had a chance to

create a notion of trust (or mistrust). These developers who

effectively start with a blank slate may succumb to wrong

perceptions in the absence of these past experiences. Fur-

ther, the lack of prior interactions also creates a lack a

shared understanding of what the work composition and
required processes, which leads to additional conflicts [4].

In fact, different team members often have a different un-

derstanding of the product and its responsibilities making it

difficult to explain design rationale, agree on the right tech-

nology, or find experts. These factors in turn decrease team

efficiency and can lead to increases in software defects,

failure to satisfy project requirements, or, in extreme cases,

complete project failure.

The above problems are not new and tools exist with goals

to prevent technological conflicts [1] and aid in the learning

of new technology (APIs) [9]. While these tools have great-
ly increased the ability of teams to handle technological

difficulties, they do not help much with the social difficul-

ties. Tool support to facilitate social issues such as engen-

dering trust or creating shared mental models is nascent at

best. We believe that future software development tooling

will focus on the inclusion of social interactions and the

context of software use along with software artifacts, which

can then help in building trust about a technological piece

or a team member. Another future direction is the archival

of the context in which a piece of software is being used

and the information that led to the technology decision.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Future CSD’12, February 12, 2012, Seattle, Washington, USA.

Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

Such archival of usage context and design rationale can

then inform the creation of shared mental models even

when team members have not worked together.

SOCIAL ARTIFACTS

Software engineering projects have traditionally focused on

collecting data from technical artifacts that are created as a

byproduct of the process of developing software. For ex-

ample, mining a software version control repository allows

teams (and researchers) to reconstruct the process of soft-
ware development and identify problem spots in the devel-

opment process. Other popular artifacts are project defect

databases, mailing lists, and real-time chat. Although the

last two are social mediums, the extent to which most

projects make use of these archives to analyze social inte-

ractions is negligible.

Whereas previous environments considered each of the

different collections of artifacts as its own unique entity,

advancements in the ubiquity and robustness of project

hosting and development focused websites often provide

integrated methods that link together project artifacts. These
sites frequently have APIs for analyzing these social inte-

ractions and context of a project. For example, GitHub al-

lows developers to not only search existing code reposito-

ries for similarly functional code, but also log social inte-

ractions such as interest in a particular project repository,

ability to get updates about a project, or follow activities of

another developer. Technical question & answer websites

(e.g., StackOverflow) facilitate social discussions around

technical topics and have become a critical resource when

seeking technical information. Further, these sites also

record an aggregation of users’ interaction and the “quality”
of their contributions via reputation scores (GitHub score or

StackOverflow reputation points). The use of reputation in

these as an external signal of expertise is becoming com-

mon as shown by the success of tools that generate resume

like documents from StackOverflow and GitHub activity

histories. Anecdotal evidence shows that large enterprises

are adopting similar technology to provide a database of

questions, answers, and expertise for their own internal

communities.

These sites have laid the foundation for recording user ac-

tivities to provide information on user skills and expertise.

However, they still exist as islands of information in an
increasingly connected world. They provide few connec-

tions to other resources and little insight into how to act

knowing that a user has a particular set of skills. We believe

that the next generation development environments will use

public APIs of websites that log social interactions and

combine them with other information, such as trends of

usage of a particular technology to create analytics that

provide concrete actionable information in making deci-

sions regarding individual software development or project

management.

INTEGRATION OF ANALYTICS

We propose that future development tools should treat arc-

hived social and technical data as first-class entities rather

than by-products of the software development process. This

is a design shift from the current methods that is necessary

to create robust and actionable analytics and derive full

value from the collected data. This information, when de-

signed to be easily accessible, can be easily combined with

internal and external data sources to create a shared context
between team members, engender trust, and provide sup-

port for decision making within the team. Here we discuss

two such scenarios of analytics use.

Design analytics through the IDE: Most software engineers

spend a significant portion of their time within the inte-

grated development environment (IDE). These environ-

ments (e.g., Eclipse and Microsoft Visual Studio) are mod-

ular and allow extensions, which have been used to create

plugins that help in search, debugging, change awareness,

and so on. We believe that analysis of past usage of a tech-

nology, ongoing trends, reputation of the team, and its
process can be tightly integrated with the IDE to help in

decision-making by calculating analytics based on the con-

text of use and providing the information in a timely man-

ner.

Figure 1. Enhanced Context Aware Method Browsing in

an Integrated Development Environment

Figure 1 shows a mockup of an IDE augmented with pri-

vate and publicly available information and analytics. Let

us assume that a developer is exploring which method to

use on an object. A standard development tool typically

provides an alphabetical list of the applicable methods, their

signatures, and documentation if it is available inline with

code. In our example, our analytics enhanced IDE has ana-

lyzed the existing code base to identify how often each of

the methods is used in the project and across all projects in

the organization, the quality of the documentation, the track

record of the method in terms of defects, and also has que-

ried external question and answer services to provide an
immediate link to technical questions about the method.

Users can also vote (simple thumbs up or down mechan-

ism) on the information that they found pertinent when

making their decision, which will help in archiving the de-

sign rationale for future use.

The integration of analytics would also include social in-

formation such as the reputation of the technology provider,

his/her frequency of contributions, status in the project, etc.,

The analytics can be contextualized by providing informa-

tion only about current team members, so that it can help in

identifying expertise and engendering trust across current
team members (who may be distributed).

Design Analytics for Project Management: Beyond the lev-

el of a developer we consider a project architect who is re-

visiting the design of her project. Software defects can

arise because of the lack of a shared mental model of the

system, which can occur when the design rationale for a

technical decision is not readily apparent. This can cause

both interpersonal issues in a team and sometimes severe

technical issues – an example of which happened in 2009

when many Linux distributions rushed to patch a critical

component that utilized unitialized and out of process

memory as an entropy pool for encryption. The rationale
behind this decision was not explicitly recorded and a later

effort to clean up typical poor coding practices had re-

moved this code and thus all entropy necessary for encryp-

tion and all security from the system. Design decisions such

as above can be facilitated by using publicly available data

surrounding the usage contexts and problems of different

libraries, modules, and methods. Further, the tool can help

archive information that led to the final decision (e.g., pre-

valence of questions on public QA sites, the trends of each

API in search engines, poster karma, trust in a particular

company) through simple voting mechanisms. These design
rationales can then be easily made available for future ref-

erence and analysis. Unfortunately, at this stage, most

projects lack even a basic tool that would be suitable for

augmentation in this way.

FUTURE CHALLENGES

The vision that we present here is conservative, but we be-

lieve, a realistic vision of changes to come in the next five

years of software engineering. While some our suggestions

are incremental changes to the process, they lay the founda-

tion for much needed long-term work. A growing concern

is the ballooning size of software development teams and

the impact this has on the ability of team members to un-

derstand the project and to build trust in other team mem-

bers. Even simple issues, such as understanding that differ-
ent parts of the world have different work weeks and holi-

days can easily lead to a breakdown of trust within a team

when responses are too slow. When one factors in the my-

riad of other concerns bearing down participants in a soft-

ware ecosystem, it quickly becomes clear there is a lot of

work needed to build trust and understanding past decisions

as discussed in this work.

ABOUT THE AUTHORS

Patrick Wagstrom is a research staff member at the IBM TJ

Watson Research Center in Hawthorne, NY. As a member

of the Governance Science team he conducts research into

improving team performance across the entire software

development ecosystem. His recent research focuses on the

ways that extended stakeholder (e.g. individuals involved in

the software process who do not write code) impact the

ability of enterprises to deliver complex software packages.

Anita Sarma is a professor in the Computer Science and

Engineering department at the University of Nebraska-

Lincoln. She heads the Interaction Design and Coordination

lab at UNL. Her research involves understanding and facili-

tating coordination in distributed work. Her work includes

empirical analysis of existing software teams (and project

archives), creating novel coordination tools, and end user

experiments to evaluate the feasibility of coordination tools.

REFERENCES

1. Brun, Y., Holmes, R., Ernst, M.D., and Notkin, D.

Proactive Detection of Collaboration Conflicts. Pro-

ceedings of the 19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations of Software

Engineering, ACM (2011), 168–178.
2. Herbsleb, J. and Mockus, A. An Empirical Study of

Speed and Communication in Globally Distributed

Software Development. IEEE Transactions on Software

Engineering 29, 6 (2003), 1-14.

3. Herbsleb, J.D., Mockus, A., Finholt, T.A., and Grinter,

R.E. Distance, Dependencies, and Delay in a Global

Collaboration. Proceedings of the 2000 ACM Confe-

rence on Computer Supported Cooperative Work, ACM

(2000), 319-328.

4. Hinds, P. and Bailey, D. Out of Sight, Out of Sync: Un-

derstanding Conflict in Distributed Teams. Organization
Science 14, 6 (2003), 612-632.

5. Jarvenpaa, S.L., Knoll, K., and Leidner, D.E. Is Any-

body Out There?: Antecedents of Trust in Global Virtual

Teams. Journal of Management Information Systems 14,

4 (1998), 29-64.

6. Nguyen, T., Wolf, T., and Damian, D. Global Software

Development and Delay: Does Distance Still Matter?

Proceedings of the 2008 International Conference on

Global Software Engineering, IEEE (2008), 45-54.

7. Olson, G.M. and Olson, J.S. Distance Matters. Human

Computer Interaction 15, 2&3 (2000), 139-178.

8. Ramasubbu, N. and Balan, R.K. Globally Distributed
Software Development Project Performance: An Empir-

ical Analysis. Proceedings of the the 6th Joint Meeting

of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on The Foundations of

Software Engineering, ACM (2007), 125–134.

9. Stylos, J. and Myers, B.A. Mica: A Web-Search Tool

for Finding API Components and Examples. IEEE Sym-

posium on Visual Languages and Human-Centric Com-

puting, 2006. VL/HCC 2006, IEEE (2006), 195-202.

